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Off-equilibrium response function in the one-dimensional random-field Ising model
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A thorough numerical investigation of the slow dynamics ind+el random-field Ising model in the limit
of an infinite ferromagnetic coupling is presented in this paper. Crossovers from the preasymptotic pure regime
to the asymptotic Sinai regime are investigated for the average domain size, the autocorrelation function, and
staggered magnetization. By switching on an additional small random field at thet jirthee linear off-
equilibrium response function is obtained, which displays as well the crossover from the nontrivial behavior of
thed=1 pure Ising model to the asymptotic behavior where it vanishes identically.
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I INTRODUCTION Txs(t—tw) = Gg(0) ~ Gyt —t,,) 3

A phase-ordering system, such as a ferromagnet quenchétd xa4t;ty) is the off-equilibrium extra response. Notice
below the critical point, offers the simplest example of slowthat Eq.(3) may be read as the statement thayt—t,)
relaxation with many of the interesting features observediepends on time througB.(t—t,,). Mean-field theory for
also in more complex glassy systefds. At the core of this  glassy systems predidt4] that in the asymptotic time region
phenomenology is the separation of the time scales of thehis holds also off-equilibrium with(t,t,,) = x(G(t,t,)). If
fast and slow variables. In a domain-forming system equilibthis is the case and if lim,.. x(t,ty) = xeq then static and
rium is rapidly reached in the interior of domains while the dynamic properties are connectgs by the relation
interfacial degrees of freedom remain out of equilibrium for

a time that diverges with the size of the system. In these dz)}(e)
conditions the order-parameter autocorrelation function splits -T 4G =Pedd), (4)
into the sum G=q

_ where x¢q and P.{q) are the linear susceptibility and the
G(t,ty) =Gst—ty) + G t/ty) oy overlap probability distributiof6] in the equilibrium state.
Applying the scheme to phase ordering, we should find
whereGg(t—t,,) is the stationary time translation invariant
contribution due to fluctuations in the bulk of domains and d’x(G)
Gadt/ty) is the aging, or scaling contributid@,3] originat- BRPTE
ing in the off-equilibrium fluctuations. In the time scale over
which G¢(t—t,,) decays to zerd,(t/t,,) stays practically
constant aM?, whereM is the equilibrium value of the order
parameter, while the decay Gf,(t/t,,) takes place for much
larger time separations. Usirg(t,t)=1 for spin variables,
this impliesG¢(0)=1—M?.
A structure similar to Eq(1) is observed also in the linear

=48(q—M?) ®)
G=q

since the overlap function in the equilibrium state is given by
the & function[6]. On the other hand E¢3) may be rewrit-
ten asT y(t—t,) = (1—[Gg(t—t,) + M?]) and, ift,, is suf-
ficiently large, parametrizing time through the full autocor-
relation function we have

response at the timeto a random external field switched on 1-G for M2<G=<1
at the earlier time Y -
w Txs(G) {l—MZ for G<M?2, ®
t,ty)= t—t,)+ t,ty), 2 . . ~
X(tt) = Xt tw)  Xag T, tw) @ \which gives —T(d2/dGZ)Xst(G)|G:q=_5(q—M2). Hence,
_ o for Eq. (4) to hold, one must necessarily have
where the stationary contributiongg(t—t,) and Gg(t
—t,,) are related by the equilibrium fluctuation dissipation lim X(tytw)Z)A(st(G) (7)

theorem ty—o

and Iimwﬁxxag(t,tw)zo. Numerical simulations for the

*Email address: corberi@na.infn.it Ising model[7] in d=2 andd=3 as well as analytical re-
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cial feature of this walk, from our perspective, is the cross-
over between the preasymptotic regime, characterized by
free diffusion as in the pure system, and the asymptotic re-
gime characterized by Sinai diffusion. Measuriggk(t,t,,)
andp,(t), in the preasymptotic regime we shall find

function to scale agag(t,tw)=tga}ag(t/tw) with a=1/2 on
the basis of the argument thgf(t,t,,) is proportional to the
interface density,(t)~L ~(t) whereL(t)~t? is the typi-
cal domain size and=2 for nonconserved order-parameter
dynamics[3].

Motivated by analytical results[11] for the one-
dimensional Ising model, which, instead, gize 0, recently
a detailed study of the behavior of the response function ha,

been undertakefil2] wherein an interesting dependence of glsa(':g it:z ﬁ;tr?ar?gzgm.e Tﬁéng%/é g\fs Irc())r;\%;;(c:n;fu)sgge;akes
the exponent on the space dimensionality has been seen? pe, 9 $W

This is best explained in terms of the effective responseh ot go below the rate of loss of interfaces. However, going
ar(t,ty) dUE 10 a single interface and defined by over to the asymptotic regime the landscape becomes rugged

and activated processes do play a role. When this happens

Xag b tw) = p1() Xer(t,ty)- (8) _Xeﬁ(t,tw) slows down with respect tp,(t) eventually reach-

ing

In this form the behavior of.{(t,t,) appears to be deter- 1
mined by the balance between the interface loss due to coars- Xer(t,tw) ~p; 74(1), (12
ening and the response associated to a single interface. If one o .
requires yaq(t,tw) ~pi(t) clearly xeq(t,t,) must be a con- Which leads to the vanishing of.{t.t,). Through this
stant. In Ref[12] it was found that for an Ising system this mechanism the validity of Eq4) is restored in thed=1
is the case only fod>3, while ford<3 there is the power- RFIM.
law growth

Xe(t,tw)=p; H() (12)

N Il. UNPERTURBED SYSTEM
Xer(t,ty) ~(t—ty) 9

with numerical values for the exponent at different dimen-
sionalities compatible witle=(3—d)/4. At d=3 the power
law is replaced by logarithmic growth. It has been conjec- N N

tured that this dimensionality dependencecofis the out- 1— o o

come of the competition between the curvature of interfaces Hlol Jigl 71711 ;1 Mo 13
and the external perturbing field in the drive of interface

motion. According to this picturd=3 is the dimensionality whereJ>0 is the ferromagnetic coupling amg= = hg is an
above which interface motion is dominated by the curvatureuncorrelated random field with expectations

while below d=3 the external field competes effectively

In the following we consider the=1 Ising model with
the Hamiltonian

with the curvature. The more so, the lower is the dimension- En(h;)=0
ality, until in d=1 interfaces reduce to pointlike objects )
driven only by the external field. When this happens, the rate En(hih;) =hgé;; - (14)

of growth of the single interface response matches exactly _ o

the rate of loss of the interface density, with=1/2 anda  Hereh; is not a perturbing field, sb, does not have to be
=0. Then,xadt,ty) does not vanish a,— and the sec- Small. We will consider the two different dynamical evolu-
ond term in Eq.(2) contributes to;}(G) producing the vio- tions taking place when the system is quenched to the final

lation of Eq.(4). In short, dimensionality acts as the control [EMPEraturer starting from the two initial states.
parameter that allows to modulate the competition between _('_) The system Is prepared into a spin configuration con-
the two opposing mechanisms driving interface motion and@iNing a single interface

is summarized by

o =sgr(i) (19
1
> for d>3 (i) The system is in equilibrium at infinite temperature
a= (10) with the uniform measure
d-1
—— for d=3. Poloi]=2"N. (16)

In this paper we investigate a generalization of this phedn order to have a phase-ordering process the equilibrium
nomenon occurring in the framework of the random-fieldstate at the final temperature of the quench must be ordered.
Ising model(RFIM), which further clarifies how the overall Inthed=1 RFIM this is not possible even @t=0, since the
behavior ofy,{t,t,) originates in the interplay between the size of the ordered domains is limited by the Imry Ma length
rate of growth of the single interface response function and.y =4J2/h(2). So, we take the limif12] of an infinite ferro-
the rate of loss of defect density. Here we specialize to thenagnetic couplingl—c in order to havel,,=. In this
d=1 RFIM. In this case domain walls perform random case the equilibrium state is the mixture of the two ordered
walks in a random potential of the Sinai tygE3]. The cru-  states
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Pec[O'i]: ZGX% — ?H[O’J

x%]'_[ 5(0i—1)+%1__[ Soi+1)  (17)
: : b log(cx)®

for any finite temperaturé@. Notice that in the corresponding
pure stateV?=1, which impliesyeq=0 andP¢(q) = &(q
—1). Furthermore, withJ=c thermal fluctuations within
domains are suppressed and dynamics is reduced to interface
diffusion. With the initial condition(15) we have the diffu-
sion of the single interface and with the initial conditicir®)
we get the diffusion-annihilation process of the set of inter-
faces seeded by the initial condition. Characteristic lengths
of the process are in the first case the root-mean-square dis-
placement(RMSD) R(t) of the single imerfac_e and in the FIG. 1. Rescaled RMSI(t)/L4 versus rescaled timéLé,for
second case the average distance between interfaces- 5 single interface and_,=1,4,25. The fit parameters ara
erage domain sizel(t). Furthermore, since the typical size =133, b=0.274, andc=1.33.
of the potential barrier that a walker must overcome after
traveling a distanceis 1¥?h,, there remains defined another t )
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characteristic length L(t,Lgy)= Lgﬁ< (21

(18  where the scaling functiorC(x) obeys the same limiting
behaviors as in Eq20).
) ) _ ) Next, let us consider the autocorrelation function
as the distance over which potential barriers are of the Ord%(t,tW,Lg)=(1/N)Eh[Ei(oi(t)cri(tW»h] where the angular
of magnitude of thermal energy. This length is importanthrackets denote the average over thermal noise for a given
because it separates the distances smaller thanover  realization of the field h;]. Due to the absence of thermal
which diffusion takes place as in the pure system WR{t)  flyctuations within domain&(t—t,)=0 and the autocor-
or L(t)~t"? from the distances larger thn, over which  rejation function is entirely given by the aging component
diffusion is dominated by the random pOtential and it is Ofthat sa“sf'eg':'g 3) the Sca"ng relation
L(t)

Considering different temperatur@sin the presence of )
random fields of different strengtiy,, we have let the system
(spins are updated in random orfléie use Metropolis tran-  of the Sinai regime £==). In the first case from Eq21)
sition rates, which is the probability to flip the spin pg,

Ttw),z (22)

Gag(t,tW,Lg)=F(

the Sinai type[14] with R(t) or L(t)~(Int)% Clearly, the
limit of the pure system correspondsltg=o°.

evolve with initial conditiong15) and(16). One time unitis  where z=L(t,)/Ly. The shape of the scaling function
defined equal to one flip attempt per spin, on the average(x,z) is known in the limits of the pure system£0) and

=min(1,exg—(L/T)AH]). In the case of initial condition 9
(15), we have found that the RMSD of the single interface >
depends o andh, throughlL 4 satisfying(Fig. 1) the scal- 10k
ing relation ~
b log(ex)?
t &
R(t,Ly)=LgR| — (19 ax'”?
Lg i
1 |-
with
O L,=400
x¥? for x<1 A Ly=1600
R(X)""r 2 (20) 10_1 Lol AT el e i i
(Inx)=  for x>1, e 0 102
t/L2

which displays the crossover from the pure regime to the
Sinai regime. A completely analogous behavior is obtained in  F|G. 2. Rescaled average length of domadiige)/L 4 versus re-

the second case for the typical domain di4¢), measured
as the inverse density of interfacasl(t). We find (Fig. 2

scaled timet/LS, for multiple interfaces an#l;=400,1600. The fit
parameters ara=3.45, b=0.271, ancc=15.8.
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FIG. 3. Autocorrelation functionG(t,t,) versus the ratio FIG. 4. Total staggered magnetizatibh(t) versus rescaled av-
[L(1) =L (tw)J/L(tw), for Ly=400, 1600, and=0.1, 1, 4, with  erage length of domainis(t)/L,, for L,=400,1600.
z=L(ty)/L4. Solid lines are the exact results fpr-0 andz— .

) rations are uncorrelated an(t=0L,)=0. As time
follows x=yt/t, and from the exact solutiofil5] of the  gyolves, one expects the spins to correlate with the field pro-

Glauber dynamics for the Ising chain ducing growth inM(t,L,). Indeed,M(t,L,) displays(Fig.
4) growth in the preasymptotic regime(t)<L,, which

F(x.2=0)= Earcsif( 2 ) (23  however, is followed by an intermediate regime with a con-

' iy 1+x2/)° stant plateau folL (t)~L, and then by a decrease toward

zero forL(t)>L4. In the intermediate and asymptotic re-
The second case is obtained takipgso large that Iy can  gimes one has
be neglected with respect to tlp. This yields x

— 2 L(t
=(Int/Int,)? and[13] M(t,Lg):M( |_() 2
g
4 1
F(xz=o)= —=— 2. (24 with M(x)~x"Y2for x>1. In order to understand how this
3\x comes about, it is useful to look M(t,Ly) as made up by

separate contributions associated to the single interfaces
whose number decreases as time goes on. This is formalized
F(x,00 for x—1<1/z by writing

F(x,0) for x—1>1/z (25 M(t,Lg)=p()Mes(t,Ly), (28

In the intermediate cases with finite valueszpbne expects
F(x,2)=

where the condition ox can be rewritten more transparently which definesM¢x(t,L¢) as the effective staggered magneti-
asL(t)—L(t,)<LgqorL(t)—L(t,)>Ly. While our data in  zation associated to a single interface. Using €7) then
Fig. 3 show clearly that Eq25) is obeyed fox—1<1/z, the  we have

check of the crossover to the Sinai regime requires simula-

tion times too long for what we can achieve. In any case, the _ L(t)
behavior of the data under variation ofin Fig. 3 shows Meﬁ(t!Lg)_LgMeﬁ(_Lg (29
clearly the onset of the crossover. Notice that %) means
that even if the shortest ting, is chosen inside the Sinai with (Fig. 5 the functionMgg(x) obeying
regime, namely, after the potential has developed a rough
landscape, for displacements upltg in the bottom of the x  for x<1 30
potential valleys interface diffusion takes place as in the pure Meg(X) ~ & for x>1. (30
system.
Einqlly, let us consider the behavior of the staggered magThe interpretation oM(t,L4) as the single interface con-
netization tribution to the buildup of magnetization can be substantiated
by measuringM (t,L) in the process with the initial condi-
T tion (15). In this case, defininyl gnqdt,Lq) =NM(t,L,), we
M(t,Lg)Z _2Eh Z <Ui(t)>hhi : (26) find (Flg 6 smgle( g g
Nhg i :
. . Lo . . L(t)
Essent@ly, this quantlty gives the be_hawor(qﬁmuQ the Msingle(t!Lg):Lngingle< 3 ) (31)
magnetic energy per spin. A0 the spin and field configu- g
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Meff<t)/|-g
Tx(t.t,)

O L=25
A L=100
1 10 10" 1 10 10°
L(t)/L L(t)/L(t)—1
FIG. 5. Rescaled effective staggered magnetizalig(t)/L 4 FIG. 7. Total linear respons&y(t,t,,) versus the ratid L(t)
versus rescaled average length of domaln@)/L,, for L, —L(ty)]/L(ty), for Lg=400, 1600, andz=0.1, 1, 9. The solid
=25,100. The fit parameters aae=0.68 andb=1.7. line is the exact result foz—0.

where Mgjngd X) displays the behaviof30). From this we Ill. RESPONSE FUNCTION

may draw the following conclusions. Let us now consider what happens if at the titpe-0 an
(i) When there is only one interface in the system, theadditional random fielde;= * €5 uncorrelated withh; and

spin-field correlation grows with time. Therefore, this is not with expectations

a local effect involving only the alignment of the pair of

spins at the interface with the local field. Rather, it is a large

scale effect involving the optimization of the interface posi-

tion with respect to the entire field configuration.

(i) The magnetization growth takes place with different. . . .
time laws in the preasymptotic and asymptotic regimes. is switched on. We takey<h, and we are interested in the

(iii) The total magnetization behavior of Fig. 4, when linear response function with respect to thgerturbation

L . iven b
multiple interfaces are present, then is just due to the fact thaq y

E(e)=0

EE(EiGj):GS(Sij (32)

in the preasymptotic regime the rate of growth of the single T
interface magnetization balances the rate of loss of inter- Tx(tty,Ly)=—SEE| X (oi(D)nce|, (39
faces, while in the asymptotic regime interfaces do disappear Nep i

faster than the growth of the single interface contribution to )
the magnetization. where the external fiell acts fromt=0 and undergoes the

change fromh to h+ € att,,.

Due to the suppression of thermal fluctuations within do-
mains enforced through=«, the stationary contribution
xs(t—ty) in Eq. (2) vanishes identically. Therefore, the
above response function is entirely constituted by the aging
term y,{t.ty). The interest, then, is focused on the scaling
properties. As in the case of the autocorrelation function, we
find (Fig. 7) that this quantity obeys the scaling form

~ L(t)
Tx(tty,Lg)=x m,z . (34

Forz=0 the pure system response functidd] is recovered

~ 2
10 2L . X(x,z=0)= \/—_arctan/xz—l, (35)
10° 10 1 10 10 ™
R(t)/l"-’ which is responsible for the violation of E@) in the pure

FIG. 6. Rescaled single interface staggered magnetizatiorlrSing chain[12]. In fact, from the equilibrium stat€l7) we

M ingdt)/L 4 Versus rescaled RMSB(t)/L g, for L;=1,4,25. The ~OUght o havePe{q)=4(q—1), which is consistent with
fit parameters ara=0.75 andb=1.15. Eq. (4), as explained in the Introduction, if onjy(G) given
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FIG. 8. Total linear respons€&x(t,t,) versus autocorrelation
G(t,ty), for Ly=25,100, andz=1,4,9,16. The solid line is the ex-
act result forz—0.

FIG. 9. Rescaled effective linear respongeq(t,ty)/L(t,)
versus the ratio[ L(t)—L(t,)]/L(t,), for Ly=25,100, andz
=1,16. The solid line is the exact result for0.

by Eq. (6) enters intoy(G) and the limitM2—1 is taken

. S S Lastly, it remains to make sure th%;ﬁ(x,z) may be iden-
Zi;tgr(;gfeorﬁent;%tézn. Instead, eliminatingoetween Eqs(35) tified with the response function of a single interface. This

we have done by measuring the response function
A 2 - Xsingdt,tw,Lg) in the process with only one interface in the
x(G,z=0)= —arcta+ ﬁco(EG) } (36) initial condition and findingFig. 10 a behavior quite close
m to that of Fig. 9.
which spoils Eq.(4).
With z>0 there is a crossover. For values)olip to x IV. CONCLUSIONS
—1~1/z Fig. 7 shows thaty(x,z) behaves as in the pure . - .
case, on the basis of the same argument used for the auto- Qne of the hyp_othe5|s f(.)r th_e validity of EG#) _relat|_ng_
correlation function. For larger values wthe data show that static and dynamic properties Is that the large time limit of

~ o . x(t,t,) reaches the equilibrium valuge,. It is then clear
x(x,2) levels off and then decreases. This is clearly dis4on Eq (2) that for this to be true in the phase-ordering
pIaygd also in the plc_)(F|g. 8 against the gutocorn_alat!on rocessy,(t,t,) must vanish, since this is an intrinsically
function. The mechanism responsible for this behavior is th t—of—eqailibrmm contribution. In other words. the exis-
same as discussed in the preceding section for the stagger. ' '

magnetization. Let us look at the effective response of g ce of the interfacial degrees of freedom, which do not
. . : . ) . uilibrate, must not play a role at the level of the response
single interfacey.n(t,t,) defined in Eq.(8). We find a e P

Txer(thtw,Lg)=L(ty)x L) 3 Sl z=1
Xei(titw, g)_ (tw) Xeft L(tW)’Z (37 E{
~
with the scaling function displaying~ig. 9) the behavior /_}
~ =1k
S (,2) Xe(X,2z=0) for x—1<1/z ) 3
X,Z)~ £
Aet Jx  for x—1>1/z, X
~ ~ =1 172
whereyi(x,z=0)=Xxx(x,z=0). From this follows Eq(11) 10 F b(z) x
in the preasymptotic regime and E@.2) in the asymptotic
regime, which account for the crossover of the response
function in Fig. 7 in terms of the balance between the rate of ) L o
growth of the single interface response and the rate of loss of 102 10t g 10 102
interfaces. Hence, far>0 eventuallyx(x,z) vanishes and R(t,t,) /R(t,)

in the limit z—c one expects
_ FIG. 10. Rescaled single interface linear response
x(X,z=0)=0. (39 Txsingdt,tw)/R(ty) versus the ratidz(t,t,,)/R(t,), whereR(t,t,,)
andR(t,,) are, respectively, the RMSDs between timgandt, and
Therefore, for any finitd, the validity of Eq.(4) is restored  between times 0 antj,, for Ly=4,25, andz=1,9. The fit param-
asymptotically. eters area=0.75, b(1)=1.1, b(9)=0.35.
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function. Indeedy,(t,t,) normally does vanish. However, producing the out-of-equilibrium contributiofex(t,t,) to
there are exceptions in special cases and the study of thesetl® response function, independently of dimensionality or the
quite instructive since it allows to gain insight into the prop- presence of quenched disorder. These are elements that affect
erties of y,t,ty). One-dimensional systems with a scalarthe finer details, such as whetheg(t,t,,) is a constant or
order parameter and frozen bulk thermal fluctuations ddiow fast it grows. Where these properties come into play, is
make such a special case. In the 1 pure Ising model, due in putting together the contributions of all the separate inter-
to the pointlike structure of domain walls, the minimization faces throughy,(t,ty) = p|(t) xer(t,ty) which, now depend-

of magnetic energy introduces a bias in the diffusion of in-ing on dimensionality or quenched disorder, may then pro-
terfaces, which leads to a nonvanishigg(t,t,) through  duce either a vanishing or an asymptotically persistent net
Eqg. (11). Elsewhere[12] we have analyzed how Eqll)  result.

ceases to hold in going fromd=1 to d>1, due to the ex- Finally, a comment should be made about the noncommu-
tended nature of interfaces. In that case the minimization ofativity of the order of the limitsh,—0 andt,,—o°. If the
magnetic energy is hindered by the competing need to minilimit hg— 0 is taken first, the linear response function of the
mize the curvature of interfaces aggt,t,) asymptotically  pure Ising model is obtained and, as discussed above4Eq.
disappears. In this paper we have investigated a differens violated. Instead, it,,—« is taken first one finds the
mechanism altering the delicate balandd) between the asymptotic linear response functi@@®) of the RFIM, which
gain and loss of contributions to the response functionjs consistent with Eq(4). However, if the limithg—0 is

which does not require the passage from pointlike to extaken next, the response function Stickg(((x,zzoo), which

tended defects. In the=1 RFIM it is the gradual roughen- s not the linear response function of the pure model.
ing of the landscape that slows down the minimization of the

magnetic energy with respect to the growth law of the do-
main size and which eventually yields an asymptotically
vanishingy,(t,t,). Therefore, the overall picture that comes  This work was partially supported by the European TMR
out is that a coarsening system is always out of equilibriuniNetwork-Fractals Contract No. FMRXCT980183 and by
in the sense that there are always interfaces around, each oMBJRST through PRIN-2000.
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