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Off-equilibrium response function in the one-dimensional random-field Ising model
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A thorough numerical investigation of the slow dynamics in thed51 random-field Ising model in the limit
of an infinite ferromagnetic coupling is presented in this paper. Crossovers from the preasymptotic pure regime
to the asymptotic Sinai regime are investigated for the average domain size, the autocorrelation function, and
staggered magnetization. By switching on an additional small random field at the timetw the linear off-
equilibrium response function is obtained, which displays as well the crossover from the nontrivial behavior of
the d51 pure Ising model to the asymptotic behavior where it vanishes identically.
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I. INTRODUCTION

A phase-ordering system, such as a ferromagnet quen
below the critical point, offers the simplest example of slo
relaxation with many of the interesting features observ
also in more complex glassy systems@1#. At the core of this
phenomenology is the separation of the time scales of
fast and slow variables. In a domain-forming system equi
rium is rapidly reached in the interior of domains while t
interfacial degrees of freedom remain out of equilibrium
a time that diverges with the size of the system. In th
conditions the order-parameter autocorrelation function sp
into the sum

G~ t,tw!5Gst~ t2tw!1Gag~ t/tw! ~1!

whereGst(t2tw) is the stationary time translation invaria
contribution due to fluctuations in the bulk of domains a
Gag(t/tw) is the aging, or scaling contribution@2,3# originat-
ing in the off-equilibrium fluctuations. In the time scale ov
which Gst(t2tw) decays to zeroGag(t/tw) stays practically
constant atM2, whereM is the equilibrium value of the orde
parameter, while the decay ofGag(t/tw) takes place for much
larger time separations. UsingG(t,t)51 for spin variables,
this impliesGst(0)512M2.

A structure similar to Eq.~1! is observed also in the linea
response at the timet to a random external field switched o
at the earlier timetw

x~ t,tw!5xst~ t2tw!1xag~ t,tw!, ~2!

where the stationary contributionsxst(t2tw) and Gst(t
2tw) are related by the equilibrium fluctuation dissipati
theorem
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Txst~ t2tw!5Gst~0!2Gst~ t2tw! ~3!

and xag(t,tw) is the off-equilibrium extra response. Notic
that Eq. ~3! may be read as the statement thatxst(t2tw)
depends on time throughGst(t2tw). Mean-field theory for
glassy systems predicts@4# that in the asymptotic time region
this holds also off-equilibrium withx(t,tw)5x̂„G(t,tw)…. If
this is the case and if limt→`x(t,tw)5xeq then static and
dynamic properties are connected@5# by the relation

2T
d2x̂~G!

dG2 U
G5q

5Peq~q!, ~4!

where xeq and Peq(q) are the linear susceptibility and th
overlap probability distribution@6# in the equilibrium state.
Applying the scheme to phase ordering, we should find

2T
d2x̂~G!

dG2 U
G5q

5d~q2M2! ~5!

since the overlap function in the equilibrium state is given
the d function @6#. On the other hand Eq.~3! may be rewrit-
ten asTxst(t2tw)5„12@Gst(t2tw)1M2#… and, if tw is suf-
ficiently large, parametrizing time through the full autoco
relation function we have

Tx̂st~G!5H 12G for M2<G<1

12M2 for G,M2,
~6!

which gives 2T(d2/dG2)x̂st(G)uG5q5d(q2M2). Hence,
for Eq. ~4! to hold, one must necessarily have

lim
tw→`

x~ t,tw!5x̂st~G! ~7!

and limtw→`xag(t,tw)50. Numerical simulations for the

Ising model@7# in d52 andd53 as well as analytical re
sults for the spherical model@8# indeed show evidence tha
Eq. ~7! is asymptotically satisfied. More precisely, one e
pects@9,10# the off-equilibrium contribution to the respons
©2002 The American Physical Society14-1



er

h
o
e
ns

-
a

f o

is

n

c

ce
ce

re
ly
on
ts
a
ct

ol
ee
n

he
ld

ll
e
n
th
m

ss-
by

re-

kes

ing
ged
ens

-
nal

on-

re

ium
red.

th

red

CORBERI, de CANDIA, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E65 046114
function to scale asxag(t,tw)5tw
2ax̃ag(t/tw) with a51/2 on

the basis of the argument thatxag(t,tw) is proportional to the
interface densityr I(t);L21(t) whereL(t);t1/z is the typi-
cal domain size andz52 for nonconserved order-paramet
dynamics@3#.

Motivated by analytical results@11# for the one-
dimensional Ising model, which, instead, givea50, recently
a detailed study of the behavior of the response function
been undertaken@12# wherein an interesting dependence
the exponenta on the space dimensionality has been se
This is best explained in terms of the effective respo
xeff(t,tw) due to a single interface and defined by

xag~ t,tw!5r I~ t !xeff~ t,tw!. ~8!

In this form the behavior ofxag(t,tw) appears to be deter
mined by the balance between the interface loss due to co
ening and the response associated to a single interface. I
requiresxag(t,tw);r I(t) clearly xeff(t,tw) must be a con-
stant. In Ref.@12# it was found that for an Ising system th
is the case only ford.3, while for d,3 there is the power-
law growth

xeff~ t,tw!;~ t2tw!a ~9!

with numerical values for the exponent at different dime
sionalities compatible witha5(32d)/4. At d53 the power
law is replaced by logarithmic growth. It has been conje
tured that this dimensionality dependence ofa is the out-
come of the competition between the curvature of interfa
and the external perturbing field in the drive of interfa
motion. According to this pictured53 is the dimensionality
above which interface motion is dominated by the curvatu
while below d53 the external field competes effective
with the curvature. The more so, the lower is the dimensi
ality, until in d51 interfaces reduce to pointlike objec
driven only by the external field. When this happens, the r
of growth of the single interface response matches exa
the rate of loss of the interface density, witha51/2 anda
50. Then,xag(t,tw) does not vanish astw→` and the sec-
ond term in Eq.~2! contributes tox̂(G) producing the vio-
lation of Eq.~4!. In short, dimensionality acts as the contr
parameter that allows to modulate the competition betw
the two opposing mechanisms driving interface motion a
is summarized by

a5H 1

2
for d.3

d21

4
for d<3.

~10!

In this paper we investigate a generalization of this p
nomenon occurring in the framework of the random-fie
Ising model~RFIM!, which further clarifies how the overa
behavior ofxag(t,tw) originates in the interplay between th
rate of growth of the single interface response function a
the rate of loss of defect density. Here we specialize to
d51 RFIM. In this case domain walls perform rando
walks in a random potential of the Sinai type@13#. The cru-
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cial feature of this walk, from our perspective, is the cro
over between the preasymptotic regime, characterized
free diffusion as in the pure system, and the asymptotic
gime characterized by Sinai diffusion. Measuringxeff(t,tw)
andr I(t), in the preasymptotic regime we shall find

xeff~ t,tw!>r I
21~ t ! ~11!

as in the pure system. Namely, as long as diffusion ta
place in a flat landscape, the rate of growth ofxeff(t,tw) does
not go below the rate of loss of interfaces. However, go
over to the asymptotic regime the landscape becomes rug
and activated processes do play a role. When this happ
xeff(t,tw) slows down with respect tor I(t) eventually reach-
ing

xeff~ t,tw!;r I
21/2~ t !, ~12!

which leads to the vanishing ofxag(t,tw). Through this
mechanism the validity of Eq.~4! is restored in thed51
RFIM.

II. UNPERTURBED SYSTEM

In the following we consider thed51 Ising model with
the Hamiltonian

H@s i #52J(
i 51

N

s is i 112(
i 51

N

his i , ~13!

whereJ.0 is the ferromagnetic coupling andhi56h0 is an
uncorrelated random field with expectations

Eh~hi !50

Eh~hihj !5h0
2d i j . ~14!

Herehi is not a perturbing field, soh0 does not have to be
small. We will consider the two different dynamical evolu
tions taking place when the system is quenched to the fi
temperatureT starting from the two initial states.

~i! The system is prepared into a spin configuration c
taining a single interface

s i5sgn~ i ! ~15!

~ii ! The system is in equilibrium at infinite temperatu
with the uniform measure

P0@s i #522N. ~16!

In order to have a phase-ordering process the equilibr
state at the final temperature of the quench must be orde
In thed51 RFIM this is not possible even atT50, since the
size of the ordered domains is limited by the Imry Ma leng
LIM 54J2/h0

2. So, we take the limit@12# of an infinite ferro-
magnetic couplingJ→` in order to haveLIM 5`. In this
case the equilibrium state is the mixture of the two orde
states
4-2
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Peq@s i #5
1

Z
expS 2

1

T
H@s i # D

3
1

2)i
d~s i21!1

1

2)i
d~s i11! ~17!

for any finite temperatureT. Notice that in the correspondin
pure statesM251, which impliesxeq50 andPeq(q)5d(q
21). Furthermore, withJ5` thermal fluctuations within
domains are suppressed and dynamics is reduced to inte
diffusion. With the initial condition~15! we have the diffu-
sion of the single interface and with the initial condition~16!
we get the diffusion-annihilation process of the set of int
faces seeded by the initial condition. Characteristic leng
of the process are in the first case the root-mean-square
placement~RMSD! R(t) of the single interface and in th
second case the average distance between interfaces~or av-
erage domain size! L(t). Furthermore, since the typical siz
of the potential barrier that a walker must overcome a
traveling a distancel is l 1/2h0, there remains defined anoth
characteristic length

Lg5S T

h0
D 2

~18!

as the distance over which potential barriers are of the o
of magnitude of thermal energy. This length is importa
because it separates the distances smaller thanLg , over
which diffusion takes place as in the pure system withR(t)
or L(t);t1/2, from the distances larger thanLg , over which
diffusion is dominated by the random potential and it is
the Sinai type@14# with R(t) or L(t);(ln t)2. Clearly, the
limit of the pure system corresponds toLg5`.

Considering different temperaturesT in the presence o
random fields of different strengthh0, we have let the system
evolve with initial conditions~15! and~16!. One time unit is
defined equal to one flip attempt per spin, on the aver
~spins are updated in random order!. We use Metropolis tran-
sition rates, which is the probability to flip the spin ispflip
5min„1,exp@2(1/T)DH#…. In the case of initial condition
~15!, we have found that the RMSD of the single interfa
depends onT andh0 throughLg satisfying~Fig. 1! the scal-
ing relation

R~ t,Lg!5LgRS t

Lg
2D ~19!

with

R~x!;H x1/2 for x!1

~ ln x!2 for x@1,
~20!

which displays the crossover from the pure regime to
Sinai regime. A completely analogous behavior is obtaine
the second case for the typical domain sizeL(t), measured
as the inverse density of interfacesr I

21(t). We find ~Fig. 2!
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L~ t,Lg!5LgLS t

Lg
2D , ~21!

where the scaling functionL(x) obeys the same limiting
behaviors as in Eq.~20!.

Next, let us consider the autocorrelation functio
G(t,tw ,Lg)5(1/N)Eh@( i^s i(t)s i(tw)&h# where the angular
brackets denote the average over thermal noise for a g
realization of the field@hi #. Due to the absence of therma
fluctuations within domainsGst(t2tw)[0 and the autocor-
relation function is entirely given by the aging compone
that satisfies~Fig. 3! the scaling relation

Gag~ t,tw ,Lg!5FS L~ t !

L~ tw!
,zD , ~22!

where z5L(tw)/Lg . The shape of the scaling functio
F(x,z) is known in the limits of the pure system (z50) and
of the Sinai regime (z5`). In the first case from Eq.~21!

FIG. 1. Rescaled RMSDR(t)/Lg versus rescaled timet/Lg
2 , for

a single interface andLg51,4,25. The fit parameters area
51.33, b50.274, andc51.33.

FIG. 2. Rescaled average length of domainsL(t)/Lg versus re-
scaled timet/Lg

2 , for multiple interfaces andLg5400,1600. The fit
parameters area53.45, b50.271, andc515.8.
4-3
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follows x5At/tw and from the exact solution@15# of the
Glauber dynamics for the Ising chain

F~x,z50!5
2

p
arcsinS 2

11x2D . ~23!

The second case is obtained takingtw so large that lnLg can
be neglected with respect to lntw . This yields x
5(ln t/ln tw)2 and @13#

F~x,z5`!5
4

3Ax
2

1

3x
. ~24!

In the intermediate cases with finite values ofz, one expects

F~x,z!5H F~x,0! for x21!1/z

F~x,`! for x21@1/z
~25!

where the condition onx can be rewritten more transparent
asL(t)2L(tw)!Lg or L(t)2L(tw)@Lg . While our data in
Fig. 3 show clearly that Eq.~25! is obeyed forx21!1/z, the
check of the crossover to the Sinai regime requires sim
tion times too long for what we can achieve. In any case,
behavior of the data under variation ofz in Fig. 3 shows
clearly the onset of the crossover. Notice that Eq.~25! means
that even if the shortest timetw is chosen inside the Sina
regime, namely, after the potential has developed a ro
landscape, for displacements up toLg in the bottom of the
potential valleys interface diffusion takes place as in the p
system.

Finally, let us consider the behavior of the staggered m
netization

M ~ t,Lg!5
T

Nh0
2

EhF(
i

^s i~ t !&hhi G . ~26!

Essentially, this quantity gives the behavior of~minus! the
magnetic energy per spin. Att50 the spin and field configu

FIG. 3. Autocorrelation functionG(t,tw) versus the ratio
@L(t)2L(tw)#/L(tw), for Lg5400, 1600, andz50.1, 1, 4, with
z5L(tw)/Lg . Solid lines are the exact results forz→0 andz→`.
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rations are uncorrelated andM (t50,Lg)50. As time
evolves, one expects the spins to correlate with the field p
ducing growth inM (t,Lg). Indeed,M (t,Lg) displays~Fig.
4! growth in the preasymptotic regimeL(t)!Lg , which
however, is followed by an intermediate regime with a co
stant plateau forL(t);Lg and then by a decrease towa
zero for L(t)@Lg . In the intermediate and asymptotic re
gimes one has

M ~ t,Lg!5MS L~ t !

Lg
D ~27!

with M(x);x21/2 for x@1. In order to understand how thi
comes about, it is useful to look atM (t,Lg) as made up by
separate contributions associated to the single interfa
whose number decreases as time goes on. This is forma
by writing

M ~ t,Lg!5r I~ t !Meff~ t,Lg!, ~28!

which definesMeff(t,Lg) as the effective staggered magne
zation associated to a single interface. Using Eq.~27! then
we have

Meff~ t,Lg!5LgMeffS L~ t !

Lg
D ~29!

with ~Fig. 5! the functionMeff(x) obeying

Meff~x!;H x for x!1

Ax for x@1.
~30!

The interpretation ofMeff(t,Lg) as the single interface con
tribution to the buildup of magnetization can be substantia
by measuringM (t,Lg) in the process with the initial condi
tion ~15!. In this case, definingM single(t,Lg)5NM(t,Lg), we
find ~Fig. 6!

M single~ t,Lg!5LgMsingleS L~ t !

Lg
D , ~31!

FIG. 4. Total staggered magnetizationM (t) versus rescaled av
erage length of domainsL(t)/Lg , for Lg5400,1600.
4-4
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whereMsingle(x) displays the behavior~30!. From this we
may draw the following conclusions.

~i! When there is only one interface in the system,
spin-field correlation grows with time. Therefore, this is n
a local effect involving only the alignment of the pair o
spins at the interface with the local field. Rather, it is a la
scale effect involving the optimization of the interface po
tion with respect to the entire field configuration.

~ii ! The magnetization growth takes place with differe
time laws in the preasymptotic and asymptotic regimes.

~iii ! The total magnetization behavior of Fig. 4, whe
multiple interfaces are present, then is just due to the fact
in the preasymptotic regime the rate of growth of the sin
interface magnetization balances the rate of loss of in
faces, while in the asymptotic regime interfaces do disapp
faster than the growth of the single interface contribution
the magnetization.

FIG. 5. Rescaled effective staggered magnetizationMeff(t)/Lg

versus rescaled average length of domainsL(t)/Lg , for Lg

525,100. The fit parameters area50.68 andb51.7.

FIG. 6. Rescaled single interface staggered magnetiza
M single(t)/Lg versus rescaled RMSDR(t)/Lg , for Lg51,4,25. The
fit parameters area50.75 andb51.15.
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III. RESPONSE FUNCTION

Let us now consider what happens if at the timetw.0 an
additional random fielde i56e0 uncorrelated withhi and
with expectations

Ee~e i !50

Ee~e ie j !5e0
2d i j ~32!

is switched on. We takee0!h0 and we are interested in th
linear response function with respect to thee perturbation
given by

Tx~ t,tw ,Lg!5
T

Ne0
2

EhEeF(
i

^s i~ t !&h,ee i G , ~33!

where the external fieldh acts fromt50 and undergoes the
change fromh to h1e at tw .

Due to the suppression of thermal fluctuations within d
mains enforced throughJ5`, the stationary contribution
xst(t2tw) in Eq. ~2! vanishes identically. Therefore, th
above response function is entirely constituted by the ag
term xag(t,tw). The interest, then, is focused on the scali
properties. As in the case of the autocorrelation function,
find ~Fig. 7! that this quantity obeys the scaling form

Tx~ t,tw ,Lg!5x̃S L~ t !

L~ tw!
,zD . ~34!

For z50 the pure system response function@11# is recovered

x̃~x,z50!5
A2

p
arctanAx221, ~35!

which is responsible for the violation of Eq.~4! in the pure
Ising chain@12#. In fact, from the equilibrium state~17! we
ought to havePeq(q)5d(q21), which is consistent with
Eq. ~4!, as explained in the Introduction, if onlyx̂st(G) given

n

FIG. 7. Total linear responseTx(t,tw) versus the ratio@L(t)
2L(tw)#/L(tw), for Lg5400, 1600, andz50.1, 1, 9. The solid
line is the exact result forz→0.
4-5
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by Eq. ~6! enters intox̂(G) and the limit M2→1 is taken
after differentiation. Instead, eliminatingx between Eqs.~35!
and ~23! one finds

x̂~G,z50!5
A2

p
arctanFA2cotS p

2
GD G , ~36!

which spoils Eq.~4!.
With z.0 there is a crossover. For values ofx up to x

21;1/z Fig. 7 shows thatx̃(x,z) behaves as in the pur
case, on the basis of the same argument used for the a
correlation function. For larger values ofx the data show tha
x̃(x,z) levels off and then decreases. This is clearly d
played also in the plot~Fig. 8! against the autocorrelatio
function. The mechanism responsible for this behavior is
same as discussed in the preceding section for the stagg
magnetization. Let us look at the effective response o
single interfacexeff(t,tw) defined in Eq.~8!. We find

Txeff~ t,tw ,Lg!5L~ tw!x̃effS L~ t !

L~ tw!
,zD ~37!

with the scaling function displaying~Fig. 9! the behavior

x̃eff~x,z!;H x̃eff~x,z50! for x21!1/z

Ax for x21@1/z,
~38!

wherex̃eff(x,z50)5xx̃(x,z50). From this follows Eq.~11!
in the preasymptotic regime and Eq.~12! in the asymptotic
regime, which account for the crossover of the respo
function in Fig. 7 in terms of the balance between the rate
growth of the single interface response and the rate of los
interfaces. Hence, forz.0 eventuallyx̃(x,z) vanishes and
in the limit z→` one expects

x̃~x,z5`![0. ~39!

Therefore, for any finiteh0 the validity of Eq.~4! is restored
asymptotically.

FIG. 8. Total linear responseTx(t,tw) versus autocorrelation
G(t,tw), for Lg525,100, andz51,4,9,16. The solid line is the ex
act result forz→0.
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Lastly, it remains to make sure thatx̃eff(x,z) may be iden-
tified with the response function of a single interface. Th
we have done by measuring the response func
xsingle(t,tw ,Lg) in the process with only one interface in th
initial condition and finding~Fig. 10! a behavior quite close
to that of Fig. 9.

IV. CONCLUSIONS

One of the hypothesis for the validity of Eq.~4! relating
static and dynamic properties is that the large time limit
x(t,tw) reaches the equilibrium valuexeq. It is then clear
from Eq. ~2! that for this to be true in the phase-orderin
processxag(t,tw) must vanish, since this is an intrinsicall
out-of-equilibrium contribution. In other words, the exi
tence of the interfacial degrees of freedom, which do
equilibrate, must not play a role at the level of the respo

FIG. 9. Rescaled effective linear responseTxeff(t,tw)/L(tw)
versus the ratio@L(t)2L(tw)#/L(tw), for Lg525,100, andz
51,16. The solid line is the exact result forz→0.

FIG. 10. Rescaled single interface linear respon
Txsingle(t,tw)/R(tw) versus the ratioR(t,tw)/R(tw), whereR(t,tw)
andR(tw) are, respectively, the RMSDs between timestw andt, and
between times 0 andtw , for Lg54,25, andz51,9. The fit param-
eters area50.75, b(1)51.1, b(9)50.35.
4-6



r,
s
p-
la
d

n
in

in

re

on
ex
-
th
o
lly

es
um

the
affect

, is
er-

ro-
net

u-

he
.

R
by

OFF-EQUILIBRIUM RESPONSE FUNCTION IN THE . . . PHYSICAL REVIEW E 65 046114
function. Indeed,xag(t,tw) normally does vanish. Howeve
there are exceptions in special cases and the study of the
quite instructive since it allows to gain insight into the pro
erties of xag(t,tw). One-dimensional systems with a sca
order parameter and frozen bulk thermal fluctuations
make such a special case. In thed51 pure Ising model, due
to the pointlike structure of domain walls, the minimizatio
of magnetic energy introduces a bias in the diffusion of
terfaces, which leads to a nonvanishingxag(t,tw) through
Eq. ~11!. Elsewhere@12# we have analyzed how Eq.~11!
ceases to hold in going fromd51 to d.1, due to the ex-
tended nature of interfaces. In that case the minimization
magnetic energy is hindered by the competing need to m
mize the curvature of interfaces andxag(t,tw) asymptotically
disappears. In this paper we have investigated a diffe
mechanism altering the delicate balance~11! between the
gain and loss of contributions to the response functi
which does not require the passage from pointlike to
tended defects. In thed51 RFIM it is the gradual roughen
ing of the landscape that slows down the minimization of
magnetic energy with respect to the growth law of the d
main size and which eventually yields an asymptotica
vanishingxag(t,tw). Therefore, the overall picture that com
out is that a coarsening system is always out of equilibri
in the sense that there are always interfaces around, each
rd

tt
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producing the out-of-equilibrium contributionxeff(t,tw) to
the response function, independently of dimensionality or
presence of quenched disorder. These are elements that
the finer details, such as whetherxeff(t,tw) is a constant or
how fast it grows. Where these properties come into play
in putting together the contributions of all the separate int
faces throughxag(t,tw)5r I(t)xeff(t,tw) which, now depend-
ing on dimensionality or quenched disorder, may then p
duce either a vanishing or an asymptotically persistent
result.

Finally, a comment should be made about the noncomm
tativity of the order of the limitsh0→0 and tw→`. If the
limit h0→0 is taken first, the linear response function of t
pure Ising model is obtained and, as discussed above, Eq~4!
is violated. Instead, iftw→` is taken first one finds the
asymptotic linear response function~39! of the RFIM, which
is consistent with Eq.~4!. However, if the limit h0→0 is
taken next, the response function sticks tox̃(x,z5`), which
is not the linear response function of the pure model.
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